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Abstract Flame propagation involves physico-chemical processes that occur over a range of temporal and spatial
scales. By use of a multi-scale analysis it is shown that diffusion processes occurring on relatively small scales
can be resolved analytically when the overall activation energy of the chemical reactions is large, thus providing,
by asymptotic matching, explicit conditions for the state of the gas and for the flow field across the flame zone.
The mathematical formulation on the larger hydrodynamic scale reduces to a free-boundary problem, with the free
surface being the flame front. The front propagates into the fresh unburned gas at a rate that depends on both the
local strain that it experiences and the local curvature, with coefficients that depend on the diffusion rates of heat
and mass, the equivalence ratio of the mixture and the chemical kinetic parameters. The simplified model, properly
termed a hydrodynamic model, involves the solution of the Navier Stokes equations with different densities and
viscosities for the burned and unburned gas. The present work extends earlier studies by including volumetric heat
loss, such as radiative loss, which affects the dynamics and may lead to flame extinction.

Keywords Flame extinction · Hydrodynamic theory of flame propagation · Matched asymptotic expansions ·
Nonadiabatic flames

1 Introduction

Combustion systems involve intricate coupling of gasdynamics, heat and mass transport and chemical reaction rates
that occur over a range of temporal and spatial scales. It is not surprising then that the techniques of asymptotic
analysis are the primary tools used to systematically derive mathematical models of flame propagation. A model that
has contributed a great deal to the theoretical understanding of flame propagation is the hydrodynamic model, which
considers the flame to be thin relative to all the other length scales in the problem. As such, the flame front can be
regarded as a surface of density discontinuity that separates burned from unburned gases. The full set of governing
equations then simplifies to having to solve a free-boundary problem, with the flow on either side determined by the
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equations of hydrodynamics. The hydrodynamic model dates back to Darrieus [1] and Landau [2] who addressed
the linear stability of a planar flame front. They solved the Euler equations on either side of the perturbed flame
surface, and related the solutions on each side by imposing conditions of mass and momentum conservation across
the front. To complete their formulation, they assumed that the free boundary propagates at a constant speed relative
to the underlying flow immediately ahead of the flame surface. These early theories predicted that a planar flame
is unconditionally unstable, with wrinkles of short wavelength growing faster than wrinkles of long wavelength.
The instability results from thermal expansion which causes an expansion/contraction in streamtubes upon crossing
segments of the flame that are concave/convex towards the fresh mixture, respectively. Consequently, a pressure
gradient, or equivalently vorticity is generated such as to cause an intrusion in the unburned gas to further increase.
The Darrieus–Landau model ignores the flame structure and thus fails to properly describe the behavior of the
short wavelength disturbances that are comparable to the flame thickness. An improved model was suggested by
Markstein [3, Sect. C.1.4] nearly 20 years later in order to reconcile between the theoretical prediction and the
experimental observation of small-scale laboratory planar flames. A linear dependence of the flame speed on curva-
ture was hypothesized leading to stabilization of the short wavelength disturbance when the proportionality constant
admits the proper sign. Nevertheless the Darrieus–Landau or hydrodynamic instability is always present in flames
and, moreover, is dominant in large scale flames where the effects of diffusion, relevant on a scale comparable to
the flame thickness, are minimal.

In recent years, it has been recognized that the problem of premixed flame propagation is a singular perturbation
problem, in which the internal flame structure evolves on a diffusion length scale, much smaller than the outer
hydrodynamic length. Furthermore, chemical reaction is confined to a yet thinner layer embedded in the flame
zone, thus forming a nested boundary layer. The methods of boundary-layer analysis have therefore been employed
to accurately resolve the inner flame structure. The process of asymptotic matching then provides expressions
relating the flow field on either side, as well as an equation describing the evolution of the free boundary—the flame
front. Although the first publications describing such models were concerned with systematically re-examining the
linear stability of a planar flame front [4–6], it has been since recognized that the general formulation of flames
as hydrodynamic discontinuities [5] and its generalization [7–9] have numerous other applications. The formal
derivations of hydrodynamic models demonstrate that, to a first approximation, mass and momentum are indeed
conserved across the flame and the front propagates at a constant rate relative to the local unburned gas, as originally
postulated by Darrieus and Landau. Furthermore, the asymptotic models provide corrections to these conditions,
on the order of the flame thickness, that account for accumulation of mass and momentum inside of, and transverse
mass and momentum fluxes through, the flame zone. The flame speed too is found to have a linear dependence on
stretch, the combined effects of curvature and hydrodynamic strain. The sensitivity of this dependence is given in
terms of a coefficient which has become known as the Markstein number [8]; it exhibits an explicit dependence
on fundamental flame parameters, such as Lewis number, thermal expansion, activation energy, reaction order and
equivalence ratio.

Not included in the aforementioned theories is the effect of volumetric heat loss, such as radiative loss, which
can have a significant impact on flame front evolution. Most theories of non-adiabatic flame propagation are
either limited to a one-dimensional configuration or formulated within the context of diffusional–thermal theories
[10, pp. 118–123], 11–12, [13, Sect. 8.2.1], where thermal-expansion effects have been completely neglected.
Exceptions are the stability analysis of a planar flame propagating downward in a tube [14] and the study of self-
extinguishing spherically expanding flames [15]. In the present work we present details of an asymptotic analysis,
and derive a general theory of non-adiabatic premixed flame propagation. The formulation is valid for flames of
arbitrary shape propagating in general fluid flows, whether laminar or turbulent. To provide greater quantitative
accuracy, we allow for a range of mixture compositions varying from lean to rich. And to better represent a wide
range of experimental conditions, we allow for arbitrary reaction orders as well as an arbitrary temperature depen-
dence of the transport coefficients. The results are contrasted with those obtained previously for adiabatic flames.
To illustrate the importance of heat loss we also examine the effect of radiative loss in Bunsen flames which is, as
we show, partially responsible for the observed phenomenon of tip opening.
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Propagation of non-adiabatic premixed flames 311

2 Governing equations

We consider a premixed flame propagating through a combustible mixture consisting of deficient, and excess reac-
tants, both appearing in relatively small quantities relative to an abundant inert. The chemical reaction proceeds
according to

νDMD + νEME → Products, (1)

where Mi represents the chemical symbol and νi the stoichiometric coefficient of species i , with the index i = D, E
identifying the deficient/excess reactant, respectively. Typically, one of the Mi corresponds to a fuel and the other
to an oxidizer, and the global reaction (1) models the complex and multi-step oxidation mechanism occurring in
practice. The reaction rate is assumed to be proportional to the reactant concentrations ρ̃Yi/Wi raised to the powers
a and b, respectively; here ρ̃ is the mixture density, Yi , Wi are the mass fraction and molecular weight of species
i and the coefficients a, b, known as the reaction orders, are empirical numbers that mimic the global rate of the
complex reaction network. The temperature dependence of the reaction rate obeys an Arrhenius law with an overall
activation energy Ea and a pre-exponential factor B. A full nomenclature list is given in the appendix.

We allow for arbitrary mixture compositions ranging from lean to rich conditions. It is thus convenient to
introduce the ratio of the mass of excess-to-deficient reactants as � = YEu/νYDu where ν = νE WE/νDWD is
the mass-weighted stoichiometric coefficient ratio, and the subscript u denotes conditions in the unburned state.
Note that �, as defined, is always larger than unity with � = 1 corresponding to a stoichiometric mixture. In the
combustion literature it is customary to define the “equivalence ratio” as the ratio of the mass of fuel-to-oxidizer
normalized by their stoichiometric proportions. Hence � is equal to the equivalence ratio for fuel-rich mixtures and
its reciprocal for fuel-lean mixtures.

Deflagrative combustion phenomena are highly subsonic and, as such, a quasi-isobaric limit, yielding a low-Mach-
number approximation, is employed in their description. The governing equations are therefore the Navier–Stokes
equations for a variable-density gas, assumed to be Newtonian with zero bulk viscosity, supplemented by mass
balance equations for the two reactants and an energy equation for the mixture. Consistent with this approximation
viscous heating and pressure work, which normally appear in the energy equation, are neglected and the idealized
equation of state yields that the density is inversely proportional to the temperature. Since, in the present study, we
investigate the interaction between flame and flow under non-adiabatic conditions, we also account for volumetric
heat losses. We denote by Q̃L(T̃ ) the heat-loss rate per unit volume (per unit time) which, in general, is a function
of temperature such that Q̃L → 0 as T̃ → T̃u. In gaseous flames, for example, volumetric heat losses are often
associated with thermal radiation from soot particles or intermediate products generated during combustion. In this
case, the energy-loss term can be expressed in the optically thin limit, as

Q̃L = 4σ̂ l−1
p

(
T̃ 4 − T̃ 4

u

)
,

where T̃u is the ambient temperature, σ̂ the Stefan-Boltzmann constant and l p the Planck mean absorption length.
The notation adopted in this paper is to use the same variables for both dimensional and dimensionless quantities,

with the understanding that a ‘˜’ on top of the variable identifies it as the dimensional quantity.
We non-dimensionalize lengths with the hydrodynamic length scale, L , which characterizes the size of the flame,

or the size of the vessel within which the flame propagates, and velocities with respect to the (adiabatic) laminar
flame speed, SL. An appropriate time scale is then L/SL. Diffusion introduces another length scale LD = Dth/SL,
where Dth is the thermal diffusivity of the mixture, so that δ ≡ LD/L . The density of the mixture is scaled with
respect to its value in the fresh mixture ρ̃u, and the pressure is scaled using ρ̃uS2

L. The specific heats of all species are
assumed equal, and equal to a constant value cp. The viscosity µ̃, thermal conductivity λ̃ and molecular diffusivity
D̃i (binary diffusivity of reactant–inert) are assumed to depend on temperature T̃ , and they are scaled with respect
to their values in the fresh mixture, namely at a state where T̃ = T̃u. Although the dependence of transport coeffi-
cients on temperature is arbitrary, the ratios consisting of the Prandtl number Pr = µ̃cp/λ̃ and the Lewis numbers
Lei = λ̃/cpρ̃ D̃i are assumed constant, so that
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λ̃

λ̃u
= ρ̃ D̃i

ρ̃u D̃iu

= µ̃

µ̃u
≡ λ,

with λ a function of temperature. Let Q be the total heat released during combustion. We choose as a unit of tem-
perature the heat released per unit mass of MD supplied, namely QYDu/(cpνDWD), which defines the adiabatic
flame temperature

T̃a = T̃u + QYDu/cpνDWD.

It is convenient in the following to introduce as a new temperature variable the difference of the local temperature
from its value in the fresh mixture, namely � = (T̃ − T̃u)/(T̃a − T̃u) Thus, for a planar adiabatic flame that consumes
all the available deficient reactant, � varies from zero to one. Finally, the heat-loss term is scaled with respect to
λu(T̃a − T̃u)/L2

D.
In dimensionless form the governing equations are

ρ {1 + (σ − 1)�} = 1,
∂ρ

∂t
+ ∇ · (ρv) = 0, (2,3)

ρ
Dv
Dt

= −∇ p + δ Pr ∇ · λ�, ρ
D�

Dt
− δ∇ · (λ∇�) = δ−1(	 − QL), (4,5)

ρ
DYD

Dt
− δLe−1

D ∇ · (λ∇YD) = −δ−1YDu	, ρ
DYE

Dt
− δLe−1

E ∇ · (λ∇YE ) = −δ−1νYDu	. (6,7)

Here D/Dt ≡ ∂/∂t + v · ∇ is the convective derivative with t the time variable, v is the velocity vector and 
 the
viscous stress tensor given by


 = 2E − 2

3
(∇ · v)I, E = 1

2

{
∇v + (∇v)T

}

with I a unit tensor and the superscript T denoting the transpose. The mass fraction of the inert can be found a
posteriori by solving a diffusion equation, similar to (6) or (7), with no source or sink on its right-hand side. And,
although an equation for the mass fraction of the products can be written, it is unnecessary because the distribution
of product follows immediately from the constraint that all mass fractions sum to unity. The unburned-to-burned
density ratio, or thermal expansion parameter, is denoted by σ ≡ ρ̃u/ρ̃b, with the subscript b identifying the state
of the burned gas.

The reaction rate 	 is given by

	 = D ρa+bY a
DY b

E exp

{
βσ(� − 1)

1 + (σ − 1)�

}
, (8)

where β = Ea(T̃a − T̃u)/RoT̃ 2
a is the Zel’dovich number, with Ro the gas constant, and

D = ρ̃a+b+1
u

W a
DW b

E

νDWD

YDu

Dth/S2
L

(Be−E/RoT̃a )−1
(9)

is the Damköhler number, the ratio of the flow to the chemical reaction times.
If the following large-activation-energy expression for the adiabatic laminar flame speed,

SL =
{

2 ρ̃ a+b
b (λ̃b/cp)

ρ̃2
u βa+b+1

νb
E Y a+b−1

Du
G(a, b;ϕ/LeE )

νb−1
D W a+b−1

D

Lea
DLeb

E B
}1/2

exp(−Ea/2RoT̃a) (10)

is used in (9), the Damköhler number may be expressed in the form

D = (ρ̃b/ρ̃u)
a+bβa+b+1

2 Lea
D Leb

E G(a, b;ϕ/LeE )

λ̃u

λ̃b

�b

Y a
Du

Y b
Eu

. (11)
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The positive coefficient G(a, b;ϕ/LeE ), depends on the reaction orders a, b, the excess reactant Lewis number
LeE and the parameter ϕ ≡ β(� − 1) that measures the departure from stoichiometry. It is defined in general as

G(a, b; S) ≡
∫ ∞

0
ςa(ς + S)be−ς dς;

when ϕ = 0 it can be expressed in terms of the Gamma function, G = �(a + b + 1), and for a = b = 1 it simplifies
to G = 2+ S. Finally, we note that λ and QL are both prescribed functions of the temperature T̃ /T̃u = 1+(σ −1)�.

3 The multi-scale approach

The governing equations presented in the previous section can be analyzed through a multi-scale approach, by
exploiting the disparity in length scales associated with gasdynamics L , diffusion LD, and chemical reaction
β−1LD. The ratio LD/L = δ, is typically much less than unity, often less than 10−1, and the activation energies of
the chemical reactions encountered in combustion systems are large compared to the thermal energies of the fresh
mixtures, with β ≈ 10.

In the following sections, we will show how these parameters can be systematically exploited to simplify the
governing equation (2–8) and derive a new model describing the dynamics of non-adiabatic premixed flames. The
flame, consisting of the region where diffusion processes and chemical reaction occur, is a thin layer in the overall
flow field that shrinks to a surface as δ → 0. When viewed on the hydrodynamic length scale, the flame surface sepa-
rates burned from unburned gases with the flow field on either side governed by the incompressible Euler equations,
but with different densities. Viscous effects enter the formulation as a correction term of O(δ). The analysis of the
internal structure of the flame, which will be presented below, provides the conditions relating the state of the gas
and the flow velocities across the flame and determines an explicit relation for the instantaneous shape and location
of the flame surface. Although the equations in the flame zone are quasi-steady and quasi-one-dimensional, they
contain the highly nonlinear reaction rate term. For large β, however, the chemical activity is highly concentrated
within a thin layer where diffusion and chemical reaction dominate. This thin reaction zone, of O(δβ−1), resides
inside the flame zone. On the length scale L the reaction sheet and flame front coincide and are represented by a
moving free surface F(x, t) = 0. Asymptotic matching of the relevant solutions in each layer explicitly determines
the interaction across all scales of the various physical processes involved and, consequently, the instantaneous
shape and the jump conditions across that surface.

In the next sections we first discuss the structure of the reaction zone in the limit β → ∞ and then analyze the
structure of the flame zone by additionally assuming that δ → 0. Only the essential steps will be presented here;
the reader interested in further details should consult the earlier work on adiabatic flames [5,8].

It is convenient for the analysis of the flame structure to introduce a curvilinear coordinate system (n, ξ1, ξ2)
attached to the moving surface F = 0. Here, n is the distance from the reaction sheet in the direction of the unit
normal, n, pointing towards the burned gas, and ξ1, ξ2 are intrinsic surface coordinates aligned with the principal
directions of curvature at each point of the surface. The velocity of the front, back along its normal, as measured
from a fixed coordinate system is V f = −∂n/∂t , or equivalently V f = −Ft/|∇F |. If e1, e2 denote the unit vectors
tangential to the parametric curves ξ2 = const and ξ1 = const, respectively, the vectors n, e1, e2 form an orthogo-
nal triad of unit vectors. The transformation to the new coordinate system requires expressing the various vector
operators as well as the time derivative in the moving intrinsic frame.1

4 The reaction zone

For β � 1 the reaction rate (8) is exponentially small except when � − 1 = O(β−1), namely in the reaction
zone, where the temperature is near the adiabatic flame temperature. To ensure that temperature and concentration

1 Vector operators in curvilinear coordinates attached to a fixed surface can be found in textbooks on differential geometry; the trans-
formation to curvilinear coordinates attached to a moving surface has been derived in [8].
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gradients remain finite, the thickness of this region must scale as O(β−1). Self-consistency of the asymptotic
treatment also requires a near-equidiffusion formulation [16] whereby Le−1

i = 1 − β−1 lei , a near-stoichiometric
mixture limit [8] for which YEu −νYDu = O(β−1), namely ϕ = β(�−1) = O(1), and a small heat-loss term such
that QL = kβ−1g(T ) where k is a heat-transfer coefficient and g a function of temperature T = 1 + (σ − 1)�. For
radiative loss, for example, k = 4βL2

D σ̂ l−1
p T̃ 4

u /λu(T̃a − T̃u) and g(T ) = T 4 − 1.
It is convenient to introduce the enthalpy functions, hD and hE , defined from the relations

� + YD

YDu

= 1 + β−1hD + · · · , � + YE

YEu

= 1 + β−1hE + · · ·
along with the expansion � = θ + β−1θ1 + · · · (we have avoided the subscript 0 in the leading term to simplify
the notation). Since outside the reaction zone 	 ∼ 0, the relevant governing equations, to leading order, reduce to

ρ
Dθ

Dt
− δ∇ · (λ∇θ) = 0, ρ

Dhi

Dt
− δ∇ · (λ∇hi ) = δlei ∇ · (λ∇θ) − δ−1kg. (12,13)

To analyze the reaction zone, we introduce the stretching transformation n = η̂/β and the inner expansions

� = 1 + β−1θ̂ + · · · , hi = h∗
i + · · · ,

where the superscript ∗ implies evaluation at n = 0+ so that h∗
i = h∗

i (ξ1, ξ2, t). Substituting in the appropriate
governing equations, one finds

−λbδ
2 ∂2θ̂

∂η̂2 = �(h∗
D

− θ̂ )a(h∗
E

− θ̂ )b eθ̂ ,

where � = β−1νbLea
DLeb

E (YDu/βσ)a+b D. Multiplying by ∂θ̂/∂η̂ and integrating across the reaction zone one
finds

−1

2
λbδ

2

(
∂θ̂

∂η̂

)2
∣∣∣∣∣∣

∞

−∞
= �

∫ θ∗

−∞
(h∗

D
− θ̂ )a(h∗

E
− θ̂ )b eθ̂ dθ̂ .

Matching as η̂ → −∞ yields

λbδ
2
(

∂θ

∂n

)2
∣∣∣∣∣
n=0−

= 2� eθ∗
1

∫ ∞

0
(h∗

D − θ∗
1 + z)a(h∗

E − θ∗
1 + z)b e−z dz, (14)

where use has been made of the requirement θ̂ ∼ θ∗
1 (ξ1, ξ2, t) as η̂ → ∞. Note that the flame temperature per-

turbation θ∗
1 assumes the values h∗

D or h∗
E , depending on whether MD or ME is depleted in the reaction zone,

respectively, and the difference
∣∣h∗

E − h∗
D

∣∣ represents the extent of the unconsumed reactant that leaks through.
Finally, when substituting for �, the right-hand side of (14) simplifies to eθ∗

1 G(a, b; ∣∣h∗
E −h∗

D

∣∣)/G(a, b;ϕ/LeE ).
Since Eq. 13 and the remaining fluid equations do not contain source terms, a straightforward integration across

the reaction zone yields, after matching, jump relationships across n = 0. The results are summarized below

[θ ] = [hi ] = 0,

[
λ

∂hi

∂n

]
= − lei

[
λ

∂θ

∂n

]
, (15)

δ

[
λ

∂θ

∂n

]
= −

{G(a, b; | h∗
E − h∗

D|)
G(a, b; ϕ)

}1/2

exp(θ∗
1 /2), (16)

[v] = 0, [p] = 4

3
Pr

[
λ

∂

∂n
(v · n)

]
, (17)

[
∂

∂n
ρ(v · n − V f )

]
= 0,

[
∂

∂n
(n × (v × n))

]
= 0, (18)

where [·] denotes the jump in the quantity, specifically the value at the burned side minus that on the unburned side
of the sheet.
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5 The flame zone

We now consider the limit δ � 1. Since, to leading order, the diffusion terms are negligible, except in the thin flame
surrounding the reaction sheet, the transport equations in the outer zones reduce to Dθ/Dt = Dhi/Dt = 0. The
state of the fresh mixture, therefore, remains uniform and given by

θ = 0, YD = YDu , YE = YEu for F < 0, (19)

where F = 0 represents the flame front. Consistent with the previous assumptions the temperature and reactant
concentrations in the burned gas are

θ = 1 + O(β−1), YD = 0, YE = YEu(� − 1) + O(β−1) for F > 0. (20)

It is assumed here that MD is the reactant depleted at the reaction sheet, which is always the case when ϕ = O(1)

as will be verified below. The enthalpies in the burned region are therefore given by hD = 0 and hE = ϕ. We
remark that by re-scaling ϕ = O(δ), it is possible for the initially excess reactant to be locally deficient near the
reaction sheet, and hence consumed, while the initially deficient reactant leaks through. This case differs from the
one presented here in some minor mathematical detail, which we do not bother to pursue. A discussion of the various
scenarios that can take place under near-stoichiometric conditions can be found in [17,18]. Similar to heat and mass,
viscous diffusion in the outer zones is negligible to leading order, and the flow field is consequently described by
Euler’s equations but with a piecewise-constant density ρ = 1 on the unburned side, and ρ = 1/σ (corresponding
to θ = 1) on the burned side. Viscous effects are incorporated as O(δ) perturbations, with the viscosity given by
λ = 1 on the unburned side, and λ = λb on the burned side. The downstream region consists of a near field, on
the hydrodynamic length scale, with a nearly uniform temperature distribution, and an O(β) far field where the
temperature decays to its equilibrium value due to losses. However, the far field does not influence the flame front
dynamics, and so details of its analysis will not be presented here.

It is convenient in the following analysis to decompose the velocity vector into components normal and tangential
to the surface using the notation v = v⊥+ vn n. We will use lower case letters (vn, v⊥) to denote solutions in the
flame zone, and upper case letters (Vn, V⊥) to denote solutions the outer hydrodynamic regions. We also introduce
the mass flux in the normal direction to the front, m ≡ ρ(vn − V f ), as a new variable which, when evaluated just
ahead of the flame at n = 0−, represents the mass burning rate. The flame speed, S f , is conventionally defined as
the velocity of the flame front relative to the unburned gas, so that S f = Vn|

n=0−− V f .
To examine the structure of the flame zone, we introduce the stretching transformation

η =
∫ n/δ

0

1

λ
dn′, (21)

and expand all variables in power series of δ, namely of the form Vn = vn0 + δvn1 + · · · . The solution must satisfy
the jump2 conditions (15), (18) across η = 0 and must be matched as η → ±∞ with the outer variables. The state
variables are readily matched to the unburned and burned states given by (19–20), respectively. For the matching
purpose, the outer solutions for the pressure and velocities must be expanded in Taylor series about n = 0±. Using
the transformation (21) the matching conditions take the form

vn ∼ Vn0

∣∣
n=0± + δ

{
∂Vn0

∂n

∣∣∣∣
n=0±

∫ η

0
λ dη′ + Vn1

∣∣
n=0±

}
.

The leading order governing equations are

∂m0

∂η
= 0, m0

∂θ0

∂η
− ∂2θ0

∂η2 = 0, m0
∂hi0

∂η
− ∂2hi0

∂η2 = lei
∂2θ0

∂η2 − kλ(τ) g(τ ),

m0
∂vn0

∂η
− 4

3
Pr

∂2vn0

∂η2 = −∂p0

∂η
, m0

∂v⊥0

∂η
− Pr

∂2v⊥0

∂η2 = 0,

2 Note that according to the stretching transformation (21), we have λδ ∂/∂n = ∂/∂η, so that all derivatives in these relations are
replaced by ∂/∂η.
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where τ ≡ 1 + (σ − 1)θ0, so that the last term on the right-hand side of (5) is an implicit function of η. Solutions
that satisfy the jump relations at η = 0 and the matching conditions as η → −∞, are found to be

θ0 =
{

em0η

1
, ρ0 =

{ {1 + (σ − 1) em0η}−1

σ−1 ,

hD0 =

⎧⎪⎪⎨
⎪⎪⎩

−leD m0η em0η + k

m2
0

(χ1(η) − qu − qbem0η)

− k

m2
0

((η + 1)qb + qu)

,

hE0 =

⎧⎪⎪⎨
⎪⎪⎩

ϕ − leE m0η em0η + k

m2
0

(χ1(η) − qu − qbem0η)

ϕ − k

m2
0

((η + 1)qb + qu)

,

p0 = P0|n=0− +

⎧
⎪⎨
⎪⎩

(
4

3
Pr −1

)
(σ − 1)m2

0 em0η

−(σ − 1)m2
0

,

vn0 = Vn0

∣∣
n=0− +

{
(σ − 1)m0 em0η

(σ − 1)m0
, v⊥0 = V⊥0

∣∣
n=0− ,

where

χ1(η) =
∫ σ

τ(η)

x − τ(η)

(x − 1)2 λ(x)g(x) dx .

Matching on both sides of the flame zone also provides jump relations
[[

Vn0

]] = (σ − 1),
[[

V⊥0

]] = 0, [[P0]] = −(σ − 1)m2
0, (22)

where [[·]] = (·)
n=0+ − (·)

n=0− denotes the jump across the flame zone, and an expression for the mass burning rate
in the form

m2
0 log m2

0 = −k(qu + qb), (23)

where the constants

qu =
∫ σ

1

λ(x) g(x)

x − 1
dx, qb = λb g(σ )

represent the integrated losses from the unburned and burned gas regions, respectively. Equation (23) implies that,
to leading order, the flame speed is given by

S f0 = Vn0

∣∣
n=0−− V f0 = m0. (24)

Thus, to a first approximation, the flame speed of a curved flame is equal to the speed of a planar flame with the
same intensity of heat loss. In the absence of heat losses it is equal to the adiabatic flame speed, with S f0 = 1.

To assess the role of the processes that are dominant in the flame zone, we proceed to the next order in the
perturbation scheme. To O(δ) we have

1

λ

∂m1

∂η
= m0κ − ρ0K, m0

∂θ1

∂η
− ∂2θ1

∂η2 = −(m1 + λκ)
∂θ0

∂η
, (25,26)

m0
∂hi1

∂η
− ∂2hi1

∂η2 = −(m1+λκ)
∂hi0

∂η
+ lei

∂2θ1

∂η2 − λlei κ
∂θ0

∂η
− k(σ −1)θ1

d(λg)

dτ
. (27)
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Here K is the combination of curvature and hydrodynamic strain, known as flame stretch [19]. It is a measure
of the flame-surface deformation that results from its motion and the variations in the underlying flow field. A
general invariant expression for stretch is given by K = S f κ + Ks where κ = −∇ · n is the local curvature and
Ks = −n·E·n the local strain rate (see also Appendix A in [8]). Note that in the present context K ∼ m0κ + Ks .

Equation (25) can be integrated to give

m1 = f1 +
{

κ I (η) − m−1
0 K J (η)

λb(m0κ − σ−1
K) η

, (28)

where

I (η) = m0

∫ η

0
λdη = −

∫ σ

τ

λ(x)

x − 1
dx, J (η) = m0

∫ η

0
ρ0λdη = −

∫ σ

τ

λ(x)

x(x − 1)
dx,

and f1 = f1 (ξ1, ξ2, t) remains to be determined. This is achieved by solving for θ1 and hi1 and applying the jump
relations across the reaction sheet, as follows.

In the burned region θ1 = 0, so that when integrating (26) for η < 0 using the appropriate matching and jump
conditions one finds

θ1 = f1 ηem0η + χ2(η) + γ1K

σm2
0

(
em0η − 1

)
, (29)

where

χ2(η) =
∫ 0

η

(
κ I (η′) − K

m0
J (η′) + λκ

)(
em0η′ − em0η

)
dη′, γ1 = σ

σ − 1

∫ σ

1

λ(x)

x
dx .

The jump in the gradient of θ1 across the reaction sheet η = 0 can now be easily evaluated.
Next we need to compute the jump in the gradients of hi1 across the reaction sheet. We first consider the enthalpy

equations (27) in the burned region (η > 0)

m0
∂hi1

∂η
− ∂2hi1

∂η2 = kqb

m0

{(
m0κ − K

σ

)
λbη + f1 + λbκ

}
.

These equations are integrated to give

hi1 = h∗
i1

+ kqb

m2
0

{(
f1 + 2λbκ − λbK

σm0

)
η + 1

2
λb

(
m0κ − K

σ

)
η2

}
,

from which the gradients ∂hi1/∂η at η = 0+ are readily available. We recall that the superscript ∗ indicates the
common value at η = 0±. Since hi1 and their gradients vanish as η → −∞, all that is needed is an integration of
(27) across the entire unburned gas region, i.e. from η = −∞ to η = 0−. One finds

m0hi1

∣∣∣
0−

−∞ − ∂hi1

∂η

∣∣∣∣
0−

−∞
=

∫ 0−

−∞

(
κ I − m−1

0 KJ + λκ + f1

) {
lei m0(1 + m0η)em0η − k

m2
0

dχ1

dη
+ kqb

m0
em0η

}
dη

+ lei
∂θ1

∂η

∣∣∣∣
0−

−∞
− lei κ

∫ 0−

−∞
λm0em0ηdη − k(σ −1)

∫ 0−

−∞
θ1

d(λg)

dτ
dη,

from which the gradients ∂hi1/∂η at η = 0− can be evaluated. Note that the last term, which contains all the effects
of heat loss, can be simplified to

k(σ − 1)

∫ 0−

−∞
d(λg)

dη

dη

dτ
θ1dη = k

m0

∫ 0−

−∞
d(λg)

dη
θ1e−m0ηdη

and, after repeated use of integration by parts, one obtains

k(σ −1)

∫ 0−

−∞
θ1

d(λg)

dτ
dη = 1

m2
0

(
(s1 + s3)κ − s2

m0
K − qu f1

)
,
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where

s1 =
∫ σ

1

(∫ σ

y

λ(x)

x − 1
dx

) (∫ σ

y

λ(x)g(x)

(x − 1)2 dx

)
dy, s2 =

∫ σ

1

(∫ σ

y

λ(x)

x(x − 1)
dx

) (∫ σ

y

λ(x)g(x)

(x − 1)2 dx

)
dy,

s3 = −
∫ σ

1
λ(y)

∫ σ

y

λ(x)g(x)

(x − 1)2 dx dy.

With the jump in the gradients of hi1 known across the reaction sheet, the condition (15) can now be satisfied. This
yields

h∗
i1

= −γ2K

m2
0

lei + 2k

m3
0

(qu+qb) f1 + k

m3
0

B, B =
(qb

σ
(γ1 − λb) + 2s2

)
K

m0
+ 2 (λbqb − s1 − s3) κ,

where

γ2 = 1

σ − 1

∫ σ

1

λ(x)

x
log

(
σ − 1

x − 1

)
dx .

We note that the local concentration difference between the excess and deficient reactants at the reaction sheet
is proportional to the difference in enthalpies

h∗
E − h∗

D = ϕ − δ(γ2/m2
0)(leE − leD)K, (30)

which is always positive when ϕ = O(1). This implies that the deficient reactant in the fresh mixture is the one
depleted in the reaction zone, as assumed earlier. Consequently, θ∗

1 = h∗
D and the relation (30) is used to determine

the extent of the reactant ME that leaks through the sheet. Now the condition (16) can be also satisfied providing
an expression for f1,

f1 = (−α + γ1(σ − 1)/σ ) m0K + 1
2 k B

m2
0 − k (qu + qb)

,

which completely determines the mass flux m1 (see Eq. 28). Note that, with m0 given by (23), the denominator is
positive definite and consequently m1 is always well defined. The coefficient α here is given by

α = γ1 + 1

2
leeff γ2, (31)

where the “effective” reduced Lewis number is

leeff = leD + (leE − leD)
b G(a, b−1; ϕ)

G(a, b; ϕ)
. (32)

With the mass flux m1 determined, the normal velocity ahead of the flame, and hence the correction to the flame
speed, can now be deduced. As η → −∞, J − I = (σ − 1)/σγ1 so that

m1 ∼ f1 − σ − 1

σm0
γ1K − 1

m0
I (η)Ks

in this limit, and matching yields

Vn1

∣∣
n=0−− V f1 = f1 − σ − 1

σm0
γ1K,

∂Vn0

∂n

∣∣∣∣
n=0−

= −Ks .

On the burned side of the flame, i.e., as η → +∞, we find that

m1 ∼ λb(m0κ − σ−1
K) η

and matching yields

Vn1

∣∣
n=0+− V f1 = σ f1,

∂Vn0

∂n

∣∣∣∣
n=0+

= −K + σm0κ.
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These, in turn, can be expressed as jump relations across the whole flame as

[[
Vn1

]] = (σ − 1) f1 + σ − 1

σm0
γ1K,

[[
∂Vn0

∂n

]]
= (σ − 1)m0κ. (33)

Finally, we note that the jump in the velocity gradient can be also deduced directly from the O(1) momentum
equations; the consistency with the matching relations serve just as a verification of the calculation.

It is a straightforward, but tedious, matter to write the solution for the pressure and the tangential velocity compo-
nents in the flame zone, which determine the jump in these variables across the flame. Since the relevant equations
do not involve any additional effect associated with the heat-loss term, the results are similar to the adiabatic case
analyzed in [8]. We will therefore avoid writing the details and just summarize the results in the next section. The
detailed calculations involve the additional coefficients

� = (σ − 1)γ1 − (2 Pr −1)γ3 + 2 Pr(σ − 1)λb, γ3 =
∫ σ

1
λ(x) dx,

which are presented here for completeness.

6 The hydrodynamic model

The multi-scale approach of the preceding sections has reduced the full set of governing equations to the following
simplified model. On either side of the flame sheet the flow field, to O(δ), is described by

∇ · v = 0, (34)

ρ
Dv
Dt

= −∇ p + δ Pr ∇·λ
(
∇v + (∇v)T

)
(35)

with the density and viscosity piecewise constant functions, given by

ρ =
{

1
1/σ

, λ =
{

1 F < 0
λb F > 0.

The jump in pressure and velocities across the flame are given by

[[
ρ(v · n − V f )

]] = δ

m0

σ −1

σ
γ1K (36)

[[n × (v × n)]] = δ

m0
{− (λb Pr +γ1) [[n × (∇ × v)]] + 2 Pr (λb − 1) (n × (E · n) × n)}, (37)

[[
p + ρ(v · n)(v · n − V f )

]] = δ

m0

{
γ1 [[n · ∇ p]] + σ − 1

σ
γ1V f K + � κ + 2 Pr(λb − 1) ( n · E · n)

}
, (38)

with the right-hand side evaluated at n = 0−. An equation for the flame speed, correct to O(δ), may be written in
the form

S2
f log S2

f = −qL − 2δ

{(
αS f − kγc

S f

)
κ +

(
α − kγs

S2
f

)
Ks

}
, (39)

where qL ≡ k(qu + qb) is the total heat loss from the unburned and burned sides, and

γs = qb

2σ
((2σ − 1)γ1 − λb) + σ − 1

σ
γ1qu + s2, γc = 2σ − 1

2σ
qb(γ1 + λb) + σ − 1

σ
γ1qu − s4,

s4 = s1−s2+s3 =
∫ σ

1

(∫ σ

y

λ(x)

x
dx − λ(y)

)(∫ σ

y

λ(x)g(x)

(x − 1)2 dx

)
dy.
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Fig. 1 The (dimensionless)
flame speed, or mass
burning rate, of a planar
flame as a function of the
total heat loss qL . The
dashed branch, along which
the speed increases with
increasing qL correspond to
unstable states that cannot
be realized physically. The
turning point thus
corresponds to extinction

Since

S f ≡ v · ∇F

|∇F |
∣∣∣∣

n=0−
− 1

|∇F |
∂ F

∂t
, (40)

Eq. (39) can equivalently be thought as determining the flame-front position.
Equations (34–39), when supplemented with initial and boundary conditions, constitutes a nonlinear free-bound-

ary problem for the pressure, p(x, t), the velocity, v(x, t), and the instantaneous shape and position of the flame-front
interface F(x, t). All the combustion influences are accounted for in the flame-speed equation that determines how
the front evolves. The model is therefore appropriately referred to as a hydrodynamic model. It is easy to verify that,
in the absence of heat loss, the formulation reduces to that presented earlier in [8]. Versions of the adiabatic model
have been successfully used in analytical studies aimed, for example, at examining the nature of the flow induced
by thermal expansion [20] and the stability of planar [4–6] and spherically expanding [17] flames, and in numerical
studies aimed at simulating the nonlinear development of large-scale flames [21].

To leading order, the flame speed of a curved flame based on (39) is a constant equals to the speed of a planar flame
experiencing the same losses. The dependence of the planar non-adiabatic flame speed on the total loss is shown
in Fig 1. For a given qL there are two possible solutions, provided qL < e−1, and no solution for qL > e−1 ≡ qext ;
note that qext = 0.3678 which means that, approximately, the losses should not exceed 37% of the heat generated.
The states on the lower branch (dashed curve), corresponding to a flame speed that increases with increasing qL , are
unstable and, therefore, cannot be realized physically. Possible stable states would correspond to the upper branch
(solid curve). When increasing qL , starting with the adiabatic laminar flame speed (m0 = 1), the speed decreases
until extinction occurs at qL = qext . The flame speed at extinction m0 = √

e is approximately 61% of the laminar
flame speed SL.

Effects of curvature and strain are determined through the O(δ) terms in the equation. For adiabatic flames strain
and curvature combine into a single quantity, flame stretch K, and the flame speed is found to vary linearly with
stretch. The proportionality constant α, which is the only mixture-sensitive parameter in the model, is known as the
Markstein number (or Markstein length when multiplied in dimensional form). It depends on the effective Lewis
number of the mixture,

Leeff = LeE + LeDA
1 + A , A ≡ G(a, b;ϕ)

b G(a, b−1;ϕ)
− 1,

a weighted average of the separate Lewis numbers associated with the two reactants (see Eq. 32). Note that for
conditions remote from stoichiometry, corresponding to a large value of ϕ, the effective Lewis number is that of
the deficient reactant, that is, the fuel in a lean mixture and the oxidizer in a rich one. For non-adiabatic flames
the individual influence of strain and curvature on the flame speed may be quite different. It is convenient in this
case to re-scale the flame speed using m0, rather than the planar adiabatic value, as reference with the newly scaled
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quantity denoted by Ŝ f = S f /m0. The diffusion length, or flame thickness, must also be modified, which requires
replacing δ by δ̂ = δ/m0. Then the flame-speed equation (39) simplifies to

Ŝ f = 1 − δ̂(αcκ + αsKs), (41)

where

αs = m2
0α − kγs

m2
0 − qL

, αc = m2
0α − kγc

m2
0 − qL|

.

The dependence on curvature and strain is again linear but there are two distinct Markstein numbers, one associated
with strain, αs , and the other with curvature, αc. They become equal (i.e. , αs = αc = α) only when qL = 0. As a
final point we note that the conditions leading to extinction may now be modified slightly so that qext = e−1 + δε

with ε depending on time and location. Although one can write an explicit expression for ε, the general result is
not particularly instructive. The discussion is left to specific applications, such as the stabilization of Bunsen flames
presented below.

It can be easily verified that when velocities are rescaled with respect to m0 and pressure with respect to m2
0, the

governing equations (34–35) and jump relations (36–38) become identical to the similar relations for the adiabatic
model [8] after replacing δ by δ̂. Hence, when the planar non-adiabatic flame speed rather than SL is used as
reference, the only difference in the mathematical formulation when including heat losses is the propagation speed
that must now obey Eq. 41 with the two distinct Markstein numbers.

The accurate determination of Markstein numbers for various mixtures has been the subject of extensive studies,
prompted primarily by the theoretical predictions. Overall, the theoretical predictions were found to correlate well
with the experimental record. These studies, however, have focused on adiabatic flames and the objective here is
to assess the effect of heat loss. Figure 2 shows the dependency of the Markstein coefficients on equivalence ratio
for selected fuel/air mixtures with a =b=1 and the three values of qL . For these calculations, the realistic choices
λ ∼ T 1/2 and g = T 4 − 1 have been made. The magnitude of the Markstein numbers increases significantly with
increasing qL and at near-extinction conditions it may be larger by nearly a factor of five. For relatively small losses,
the difference between αs and αc is small but it is accentuated as qL approaches its extinction value; in this limit
curvature has a more pronounced influence than strain on the flame speed. A methane–air mixture appears to be
exceptional; the diffusivities of the fuel and oxidizer for this mixture are nearly equal. Since for off-stoichiometric
mixtures the diffusivity of the deficient reactant is the controlling factor, there are significant differences between
the various mixtures for lean conditions. The Markstein numbers of the heavier fuels are much larger and then
tend to decrease with increasing mixture strength. The Markstein numbers of light fuels are much smaller and they
tend to increase with increasing mixture strength. For rich conditions, all the mixtures tend to approximately the
same limiting value, because it is the diffusivity of the oxidizer which is the controlling factor; the small difference
that remain are due to variations in the thermal expansion parameter σ . Note also that for lean conditions, the
Markstein number of lighter fuels, such as hydrogen, may become negative as the losses become significantly large.
This implies that unlike hydrocarbon mixtures, for which the flame speed decreases when the flame is positively
stretched, the flame speed of a hydrogen–air mixture may increase when it is stretched.

Figure 3 shows the dependence of the Markstein numbers on the heat-loss parameter qL for selected values of
the effective reduced Lewis number Leeff . For small and moderate losses, a very little difference is seen between
the values of αs and αc. However, when extinction conditions are approached, the deviation become significant. It
should be noted that the graphs in this figure do not correspond to a particular mixture, as in Fig. 2, but rather to a
mixture of a given strength. For example, the curve with negative Leeff may be associated with a lean hydrogen–air
mixture for which both αs and αc decrease as the losses increase. The curve with positive Leeff may be associated
with a lean hydrocarbon–air mixture (except for methane) for which both αs and αc increase as the losses increase.
The curve with Leeff = 0 may be associated with a lean methane–air mixture for which αs decreases with increasing
qL while αc increases.
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Fig. 2 The Markstein numbers αs and αc associated with strain and curvature, respectively, as a function of equivalence ratio for three
selected values of heat loss qL = 0, 0.18, 0.36 (for the adiabatic case qL = 0 the values αs = αc = α. Note also, for reference purpose,
that qext = 0.3678

7 Bunsen-burner flame

With the exception of few simple configurations a complete solution of the hydrodynamic model requires a non-
trivial numerical scheme [22]. Nevertheless, when the flow field of the incoming fresh mixture is known, some
conclusions can be made about the flame speed and shape. Here we shall investigate the extinction characteristics
of a stationary Bunsen burner flame under non-adiabatic conditions, assuming that the flow issuing from the burner
is a Poiseuille flow.

We consider a slot burner of width 2L and thus restrict attention to two dimensions (x, y). Since the burner width,
typically a few centimeters, is large compared to the flame thickness (a fraction of a millimeter), the flame can be
properly treated as a hydrodynamic discontinuity. The flow of the mixture issuing from the burner is unidirectional
with (dimensionless) velocity u(y) = U (1 − y2), where the centerline velocity U is measured in units of the
(adiabatic) laminar flame speed. The flame front may be expressed in the form F(x, y) ≡ x − f (y) = 0, so that
unit vectors normal and tangential to the flame front are given by

n = i − fyj
(1 + f 2

y )1/2 , e = fy i + j
(1 + f 2

y )1/2 ,
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Fig. 3 The dependence of the Markstein numbers associated with strain and curvature, αs and αc respectively, on heat loss for selected
value of the reduced Lewis number

with i, j unit vectors in the x and y directions, respectively. Subscript y denotes here partial differentiation. Assum-
ing a symmetrical shape with respect to the axis y = 0, the relations (39)–(40) yield, to leading order, an expression
for the slopes,

fy = ± 1

m0

√
U 2(1 − y2)2 − 1,

with m0 determined from the relation m2
0 log m2

0 = −qL . This equation can be integrated to determine the flame
shape x = f (y). Note that a stationary flame is restricted to the interval |y| < ((U − m0)/U )1/2; the flame cannot
be stabilized against the flow at locations where the local gas velocity is lower than m0. The flame spreads out further
in the presence of heat loss because the speed of the non-adiabatic flame is lower. With f (y) known, the curvature
and strain rate may be computed from κ = fyy(1 + f 2

y )−3/2 and Ks = fyuy/(1 + f 2
y ). The O(δ) correction to the

speed m0 is computed from

S2
f log S2

f = −qL − 2δuy S f

(u2 − S2
f )

1/2

(
α − kγc

1

u2 − kγs
u2 − S2

f

u2S2
f

)
, (42)

from which the corresponding adjustment in flame shape is obtained.
The preceding perturbation scheme fails near the tip because of the discontinuity in slopes exhibited already in

the leading term. The resolution requires a complete hydrodynamic description which is outside the scope of this
paper. Insight into the nature of the solution, however, can be obtained if one adopts the O(δ) equation for the flame
speed (42) as an approximation. This is easily done numerically leading to the profiles shown in Fig. 4. The profiles
are plotted for several values of qL , with a sufficiently small δ = 0.01. It is seen that the flame height increases and
its base spreads out as the losses increase. Further refinement of the solution curves near the centerline demonstrates
that the flame tips are indeed rounded. We recall that flame extinction would first occur when qL exceeds the value
e−1+ δε, with ε depending on the location. In the figure this occurs near the tip for the largest value of qL . The
flame speed as a result of heat losses is small enough and cannot be balanced by the relatively high velocity of
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Fig. 4 Profiles of Bunsen
(slot) burner flames for
increasing values of the
heat-loss parameter
qL = 0, 0.25e−1, 0.5e−1,

e−1+0.01. The flame height
increases and its base
spreads out when increasing
the level of heat loss, with
tip opening occurring at
near-extinction conditions.
The profiles are calculated
for δ = 0.01, α = 1 and
σ = 6

the upcoming gas near the centerline. Consequently the flame gets blown-off locally leading to a tip opening. Tip
opening has been observed in Bunsen flames [23, Sect. V.3, 24] and could result from heat losses, as suggested
here, as well as from an imbalance in diffusion rates as discussed in [25].

8 Conclusions

We have presented a multi-scale analysis of premixed flame propagation that incorporates the effects of volumetric
heat loss. By examining the problem on separate length scales, we have demonstrated that the mathematical problem
reduces to a free-boundary problem with the flame represented by a surface of density discontinuity advected and
distorted by the large-scale flow. By analyzing the flame structure, which evolves on the much shorter diffusive
length scale, we derived jump relations for the flow variables across the flame surface, as well as an explicit relation
for the propagation speed of the moving front. Hydrodynamic theories of adiabatic premixed flames have been
derived previously that allow for quite general conditions, including variable transport, effects of stoichiometry
and arbitrary reaction orders. In the present theory, we have extended those models to include volumetric heat loss,
such as radiative loss, which are unavoidable in most flame systems, and are known to significantly affect flame
dynamics, including extinction.

The interpretation of the results of the present theory has yielded the following conclusion. When the planar non-
adiabatic flame speed is used as the reference velocity, our model can be expressed in a form that is nearly identical
to the adiabatic model. Specifically, the jump conditions across the flame front take similar forms with the only
difference arising in the flame-speed equation which exhibits a dependence on flame curvature and hydrodynamic
strain, but with two distinct coefficients, or Markstein numbers. These parameters depend now on the integrated
heat loss across the whole flame. To illustrate these effects we have assessed the dependence of the Markstein
numbers on equivalence ratio as conditions approach the flammability limit. Finally, as an illustration we employed
our model to study the quenching characteristics of a Bunsen-burner flame subject to radiative heat loss. We have
shown that these losses may be also responsible for the observed phenomenon of tip opening in Bunsen flames in
addition to differential diffusion effects that have been known as responsible for this phenomenon.

Results of the present theory may be exploited in future research activities to complement earlier works on adi-
abatic flames. Our theory provides an explicit dependence of fundamental flame parameters on volumetric losses,
as well as variable mixture strength, arbitrary reaction order, and realistic transport coefficients, and thus it mimics
a wide range of actual experimental conditions. The explicit expressions derived here for burning rate, Markstein
numbers, etc. may be used by experimentalists to correlate data from flame measurements. The general formulation
presented here can also be used in numerical simulations of turbulent premixed flames, particularly in the lami-
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nar flamelet regime, where heat losses may affect the dynamics of the individual flamelets and consequently the
behavior of the overall flame brush.

The multi-scale methodology presented here can be extended to study the dynamics of flames in heterogeneous
media, such as liquid-fuel sprays or dusty gases. In such problems there is a condensed phase in the form of liquid
droplets or solid particles dispersed in a gas phase. Viewed on the large hydrodynamic scale, the flame appears
separating the unburnt mixture from the burnt products, but the details within the flame zone are far more complex
than in single-phase combustion. On the smaller scale one must account for mass, momentum and energy interac-
tions between the gaseous and condensed phases as well as for the specific properties of the condensed phase such
as particle size, fuel volatility, and thermodynamic properties. The mathematical analysis of two-phase combusting
flows has not received the proper attention it deserves and the proposed work provides a conceptual framework for
broadening our fundamental understanding of these practical flow systems.
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Appendix: Nomenclature

B Pre-exponential factor in the expression for the
reaction rate

cp Specific heat of the mixture
Di Molecular (binary) diffusivity of species i
Dth Thermal diffusivity of the mixture
Ea Activation energy
F Function identifying the lame surface
hi Enthalpy function associated with species i
K Flame stretch
Ks Local strain rate at the flame surface
le Reduced Lewis number
l p Planck mean absorption length
L Hydrodynamic length scale
LD Diffusion length scale
Le Lewis number
M Chemical symbol
n Coordinate in a normal direction to the flame sur-

face
p Pressure
Pr Prandtl number
qi Integrated heat losses in burned and unburned

regions
qL Total heat losses
Q Total heat release
QL Heat loss per unit volume per unit time
Ro Universal gas constant
SL Flame speed
T Temperature
Ta Adiabatic flame temperature
v, V Velocity

Wi Molecular weight of species i
Yi Mass fraction of species i

Greek symbols

α Markstein number
β Zel’dovich number
γi Constants depending only on σ

δ Ratio of lengths L D/L
η Stretched normal coordinate
θ,� Non-dimensional temperatures
κ Local curvature of the flame surface
λ Thermal conductivity
µ Viscosity
νi Stoichiometric coefficient of species i
	 Reaction rate
ρ Density
σ Thermal expansion parameter
� Ratio of mass of excess to deficient reactants
ϕ Measure of departure from stoichiometry; de-

fined by β(� − 1)

Subscripts

b Burned
D Deficient
E Excess
u Unburned

Superscripts

T Transpose
∗ Quantity evaluated on burned side of reaction

zone
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